Advanced Techniques in Predictive Analytics for Financial Services

Authors

  • Naveen Bagam Independent Researcher, USA.

DOI:

https://doi.org/10.55544/ijrah.1.1.16

Keywords:

Predictive Analytics, Financial Services, Machine Learning, Neural Networks, Time Series, Big Data, NLP, Risk Management, Explainable AI

Abstract

Predictive analytics in financial services is rapidly evolving with advancements in machine learning, time series modeling, and big data analytics. This paper explores state-of-the-art techniques, emphasizing methods such as deep learning, NLP, and real-time analytics. It further examines ethical and regulatory implications, challenges, and emerging trends, aiming to provide insights for industry professionals and researchers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8.

Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(s1), 2-9.

Clementino, E., & Perkins, G. (2019). What drives fintech adoption? A regulatory focus theory approach. Journal of Financial Transformation, 49, 31-43.

Du, D., & Tanaka, R. (2020). Predicting stock returns using machine learning. Financial Innovation, 6(1), 1-31.

Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., & Li, L. (2020). Cryptocurrency trading: A comprehensive survey. Financial Innovation, 6(1), 1-32.

Feng, G., He, J., & Polson, N. G. (2018). Deep learning for predicting asset returns. arXiv preprint arXiv:1804.09314.

Kayal, P., Kumar, G., & Taneja, A. (2021). Neural networks for stock market prediction: A survey. Financial Innovation, 7(1), 1-24.

Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787.

Küçüközmen, C. C., & Hatipoğlu, A. (2018). Integrating text analytics and machine learning for currency forecasting. Journal of Forecasting, 37(7), 775-790.

Lam, J. W., & Yazdipour, R. (2013). Predicting small business credit default: An survival analysis approach. Journal of Entrepreneurial Finance, 16(1), 43-68.

Mihalcea, R., & Strapparava, C. (2012). Lyrics, music, and emotions. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 590-599).

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1-21.

Parikh, R., & Movva, S. (2019). Predicting stock market returns: An approach using n-gram analysis. Machine Learning and Knowledge Extraction, 1(4), 989-1004.

Ragini, J. R., Anand, P. M. R., & Bhaskar, V. (2018). Big data analytics for disaster response and recovery through sentiment analysis. International Journal of Information Management, 42, 13-24.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144).

Sirignano, J., & Cont, R. (2019). Universal features of price formation in financial markets: Perspectives from deep learning. Quantitative Finance, 19(9), 1449-1459.

Suryanarayana, G., Aithal, A., Kini, G., & Pai, M. (2016). Prediction of stock prices using LSTM. International Journal of Engineering and Technology, 8(2), 650-653.

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293-300.

Tsai, C. F., Hsu, Y. F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, 24, 977-984.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3-28.

Wang, J., Zhang, Y., Tang, K., Wu, J., & Xiong, Z. (2018). Alphastock: A buying-winning strategy using machine learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2518-2527).

Xu, Y., & Cohen, S. B. (2018). Stock movement prediction from tweets and historical prices. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1970-1979).

Yang, Z., & Kyung, S. K. (2018). Forecasting stock market volatility using GARCH models: International evidence. Journal of International Money and Finance, 80, 94-114.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European Conference on Computer Vision (pp. 818-833). Springer, Cham.

Sai Krishna Shiramshetty, " Data Integration Techniques for Cross-Platform Analytics, IInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 4, pp.593-599, July-August-2020. Available at doi : https://doi.org/10.32628/CSEIT2064139

Sai Krishna Shiramshetty, "Big Data Analytics in Civil Engineering : Use Cases and Techniques", International Journal of Scientific Research in Civil Engineering (IJSRCE), ISSN : 2456-6667, Volume 3, Issue 1, pp.39-46, January-February.2019

URL : https://ijsrce.com/IJSRCE19318%20Sai%20Krishna%20Shiramshetty%20%22Integrating%20SQL%20with%20Machine%20Learning%20for%20Predictive%20Insights%22%20Iconic%20Research%20And%20Engineering%20Journals%20Volume%201%20Issue%2010%202018%20Page%20287-292

Shiramshetty, S. K. (2021). SQL BI Optimization Strategies in Finance and Banking. Integrated Journal for Research in Arts and Humanities, 1(1), 106–116. https://doi.org/10.55544/ijrah.1.1.15

Downloads

Published

2021-11-30

How to Cite

Bagam, N. (2021). Advanced Techniques in Predictive Analytics for Financial Services. Integrated Journal for Research in Arts and Humanities, 1(1), 117–126. https://doi.org/10.55544/ijrah.1.1.16

Most read articles by the same author(s)