Machine Learning Applications in Telecom and Banking

Authors

  • Naveen Bagam Independent Researcher, USA.
  • Sai Krishna Shiramshetty Independent Researcher, USA.
  • Mouna Mothey Independent Researcher, USA.
  • Sri Nikhil Annam Independent Researcher, USA.
  • Santhosh Bussa Independent Researcher, USA.

DOI:

https://doi.org/10.55544/ijrah.4.6.8

Keywords:

Machine Learning, Telecommunications, Banking, Artificial Intelligence, Big Data, Customer Experience, Fraud Detection, Risk Management

Abstract

The uses of machine learning (ML) in the banking and telecommunication sectors are investigated over the course of this research paper. The results of the article indicate that by means of enhanced customer experience, identification of fraudulent behaviour, risk management, and operational efficiency, machine learning algorithms are changing these sectors. This article covers several machine learning methods including supervised and unsupervised learning, deep learning, reinforcement learning, and others together with their particular uses in the banking and telecommunications sectors especially. To show how machine learning is affecting different sectors, case papers, real-world case studies, and samples abound. Furthermore included in the article are possible future trends and advancements in the field as well as the difficulties and restrictions related to the application of machine learning solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdallah, A., Maarof, M. A., & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113.

Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. Journal of Big Data, 6(1), 28.

Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19-31.

Akter, S., & Wamba, S. F. (2019). Big data analytics in E-commerce: a systematic review and agenda for future research. Electronic Markets, 29(2), 197-227.

Alsharif, M. H., Kelechi, A. H., Albreem, M. A., Chaudhry, S. A., Zia, M. S., & Kim, S. (2020). Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry, 12(4), 676.

Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019). Customer churn prediction in telecommunication industry using data certainty. Journal of Business Research, 94, 290-301.

Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 International Conference on Computing Networking and Informatics (ICCNI) (pp. 1-9). IEEE.

Bakar, Z. A., Mohemad, R., Ahmad, A., & Deris, M. M. (2018). A comparative study for outlier detection techniques in data mining. In 2006 IEEE Conference on Cybernetics and Intelligent Systems (pp. 1-6). IEEE.

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. California Law Review, 104, 671.

Benzaid, C., & Taleb, T. (2020). AI-driven zero touch network and service management in 5G and beyond: Challenges and research directions. IEEE Network, 34(2), 186-194.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195-202.

Chopra, A., & Bhilare, P. (2018). Application of ensemble models in credit scoring models. Business Perspectives and Research, 6(2), 129-141.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Applications and value of deep learning. McKinsey Global Institute.

Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., & Zhou, M. (2017). SuperAgent: A customer service chatbot for e-commerce websites. In Proceedings of ACL 2017, System Demonstrations (pp. 97-102).

Davenport, T. H., & Bean, R. (2018). Big companies are embracing analytics, but most still don't have a data-driven culture. Harvard Business Review, 6.

Feng, D., Lu, L., Yi-Wen, Y., Li, G. Y., Feng, G., & Li, S. (2019). Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications, 61(8), 3541-3551.

Figini, S., Bonelli, F., & Giovannini, E. (2019). Solvency prediction for small and medium enterprises in banking. Decision Support Systems, 113, 91-100.

Gagné, J. F. (2019). Global AI Talent Report 2019. jfgagne.ai.

García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75-88.

Ghahramani, Z. (2004). Unsupervised learning. In Advanced lectures on machine learning (pp. 72-112). Springer, Berlin, Heidelberg.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.

Huang, W., Nakamori, Y., & Wang, S. Y. (2019). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513-2522.

Jiang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.

Khan, A., Yan, X., Tao, S., & Anerousis, N. (2018). Predicting disk replacement towards reliable data centers. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 395-404).

Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125-5131.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

McMahan, H. B., Moore, E., Ramage, D., & Hampson, S. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics (pp. 1273-1282). PMLR.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635.

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653-7670.

Nie, L., Jiang, D., & Guo, L. (2017). A power-efficient traffic prediction and processing approach for component software in the IoT systems. IEEE Systems Journal, 13(1), 729-740.

Okuda, T., & Shoda, S. (2018). AI-based chatbot service for financial industry. Fujitsu Scientific and Technical Journal, 54(2), 4-8.

Oyeniyi, A. O., Adeyemo, A. B., & Oyeniyi, A. O. (2015). Customer churn analysis in banking sector using data mining techniques. African Journal of Computing & ICT, 8(3), 165-174.

Parwez, M. S., Rawat, D. B., & Garuba, M. (2017). Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Transactions on Industrial Informatics, 13(4), 2058-2065.

Peltonen, E., Bennis, M., Capobianco, M., Debbah, M., Ding, A., Gil-Castiñeira, F., ... & Ylä-Jääski, A. (2020). 6G white paper on edge intelligence. arXiv preprint arXiv:2004.14850.

Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on industry 4.0. Wireless Personal Communications, 100(1), 145-159.

Reaves, B., Blue, L., & Traynor, P. (2015). Authloop: End-to-end cryptographic authentication for telephony over voice channels. In 24th {USENIX} Security Symposium ({USENIX} Security 15) (pp. 641-656).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215.

Shao, Z., Wu, J., Bin, S., & Abdullahi, S. M. (2018). A deep learning method for document image preprocessing. In 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 1-6). IEEE.

Son, H. (2017). JPMorgan software does in seconds what took lawyers 360,000 hours. Bloomberg.com.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tene, O., & Polonetsky, J. (2013). Big data for all: Privacy and user control in the age of analytics. Northwestern Journal of Technology and Intellectual Property, 11(5), 239-273.

Van Liebergen, B. (2017). Machine learning: A revolution in risk management and compliance? Journal of Financial Transformation, 45, 60-67.

Vodafone. (2020). Vodafone's Neuron platform: Transforming network management with AI. Vodafone.com.

Voigt, P., & Von dem Bussche, A. (2017). The EU general data protection regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International Publishing.

Weber, M., Chen, J., Suzumura, T., Pareja, A., Ma, T., Kanezashi, H., ... & Schardl, T. B. (2018). Scalable graph learning for anti-money laundering: A first look. arXiv preprint arXiv:1812.00076.

Zakrzewska, D., & Murlewski, J. (2005). Clustering algorithms for bank customer segmentation. In 5th International Conference on Intelligent Systems Design and Applications (ISDA'05) (pp. 197-202). IEEE.

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge

Jaswanth Alahari, Kumar Kodyvaur Krishna Murthy, Saketh Reddy Cheruku, A Renuka, & Prof.(Dr.) Punit Goel. (2024). Leveraging Core Data for efficient data storage and retrieval in iOS applications. Modern Dynamics: Mathematical Progressions, 1(2), 173–187. https://doi.org/10.36676/mdmp.v1.i2.19

Santhosh Vijayabaskar, Kumar Kodyvaur Krishna Murthy, Saketh Reddy Cheruku, Akshun Chhapola, & Om Goel. (2024). Optimizing cross-functional teams in remote work environments for product development. Modern Dynamics: Mathematical Progressions, 1(2), 188–203. https://doi.org/10.36676/mdmp.v1.i2.20

P. K., Goel, O., & Krishnan, K. (2024). Leadership in technology: Strategies for effective global IT operations management. Journal of Quantum Science and Technology, 1(3). https://doi.org/10.36676/jqst.v1.i3.23

Murthy, K. K. K., & Goel, E. O. (2024). Navigating mergers and demergers in the technology sector: A guide to managing change and integration. Modern Dynamics: Mathematical Progressions, 1(2), 144–158.

Murthy, K. K., Goel, O., & Jain, S. (2023). Advancements in digital initiatives for enhancing passenger experience in railways. Darpan International Research Analysis, 11(1), 40.

Mahadik, S., Murthy, K. K. K., & Cheruku, S. R., Prof.(Dr.) Arpit Jain, & Om Goel. (2022). Agile product management in software development. International Journal for Research Publication & Seminar, 13(5), 453.

Khair, M. A., Murthy, K. K. K., Cheruku, S. R., Jain, S., & Agarwal, R. (2022). Optimizing Oracle HCM cloud implementations for global organizations. International Journal for Research Publication & Seminar, 13(5), 372.

Murthy, K. K. K., Jain, S., & Goel, O. (2022). The impact of cloud-based live streaming technologies on mobile applications: Development and future trends. Innovative Research Thoughts, 8(1).

Murthy, K. K. K., & Gupta, V., Prof.(Dr.) Punit Goel. Transforming legacy systems: Strategies for successful ERP implementations in large organizations. International Journal of Creative Research Thoughts (IJCRT), ISSN 2320-2882, h604–h618.

Voola, P. K., Murthy, K. K. K., Cheruku, S. R., Singh, S. P., & Goel, O. (2021). Conflict management in cross-functional tech teams: Best practices and lessons learned from the healthcare sector. International Research Journal of Modernization in Engineering, Technology, and Science, 3(11), 1508–1517. https://doi.org/10.56726/IRJMETS16992

Arulkumaran, R., Antara, F., Chopra, P., Goel, O., & Jain, A. (2024). Blockchain analytics for enhanced security in DeFi platforms. Shodh Sagar® Darpan International Research Analysis, 12(3), 475.

Arulkumaran, R., Thumati, P. R. R., Kanchi, P., Goel, L., & Jain, A. (2024). Cross-chain NFT marketplaces with LayerZero and Chainlink. Modern Dynamics: Mathematical Progressions, 1(2), Jul-Sep. https://doi.org/10.36676/mdmp.v1.i2.26

Dandu, M. M. K., Arulkumaran, R., Agarwal, N., Aggarwal, A., & Goel, P. (2024). Improving neural retrieval with contrastive learning. Modern Dynamics: Mathematical Progressions, 1(2), 399–425. https://doi.org/10.36676/mdmp.v1.i2.30

Arulkumaran, R., Khatri, D. K., Bhimanapati, V., Goel, L., & Goel, O. (2023). Predictive analytics in industrial processes using LSTM networks. Shodh Sagar® Universal Research Reports, 10(4), 512. https://doi.org/10.36676/urr.v10.i4.1361

Arulkumaran, R., Khatri, D. K., Bhimanapati, V., Aggarwal, A., & Gupta, V. (2023). AI-driven optimization of proof-of-stake blockchain validators. Innovative Research Thoughts, 9(5), 315. https://doi.org/10.36676/irt.v9.i5.1490

Arulkumaran, R., Chinta, U., Bhimanapati, V. B. R., Jain, S., & Goel, P. (2023). NLP applications in blockchain data extraction and classification. International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET), 11(7), 32-60. Available at http://www.ijrmeet.org

Arulkumaran, R., Daram, S., Mehra, A., Jain, S., & Agarwal, R. (2022). Intelligent capital allocation frameworks in decentralized finance. International Journal of Creative Research Thoughts (IJCRT), 10(12), 669.

Arulkumaran, R., Ayyagiri, A., Musunuri, A., Goel, P., & Jain, A. (2022). Decentralized AI for financial predictions. International Journal for Research Publication & Seminar, 13(5), 434.

Arulkumaran, R., Mahimkar, S., Shekhar, S., Jain, A., & Jain, A. (2021). Analyzing information asymmetry in financial markets using machine learning. International Journal of Progressive Research in Engineering Management and Science, 1(2), 53-67. https://doi.org/10.58257/IJPREMS16

Arulkumaran, R., Mahimkar, S., Shekhar, S., Jain, A., & Jain, A. (2021). Analyzing information asymmetry in financial markets using machine learning. International Journal of Progressive Research in Engineering Management and Science, 1(2), 53-67. https://doi.org/10.58257/IJPREMS16

Tirupati, K. K., Singh, S. P., Nadukuru, S., Jain, S., & Agarwal, R. (2024). Improving database performance with SQL Server optimization techniques. Modern Dynamics: Mathematical Progressions, 1(2), 450–494. https://doi.org/10.36676/mdmp.v1.i2.32

Joshi, A., Tirupati, K. K., Chhapola, A., Jain, S., & Goel, O. (2024). Architectural approaches to migrating key features in Android apps. Modern Dynamics: Mathematical Progressions, 1(2), 495–539. https://doi.org/10.36676/mdmp.v1.i2.33

Tirupati, K. K., Dandu, M. M. K., Balasubramaniam, V. S., Renuka, A., & Goel, O. (2023). End to end development and deployment of predictive models using Azure Synapse Analytics. Innovative Research Thoughts, 9(1), 508–537.

Tirupati, K. K., Mahadik, S., Khair, M. A., Goel, O., & Jain, A. (2022). Optimizing machine learning models for predictive analytics in cloud environments. International Journal for Research Publication & Seminar, 13(5), 611-634. https://doi.org/10.36676/jrps.v13.i5.1530

Tirupati, K. K., Mahadik, S., Khair, M. A., & Goel, O., Jain, A. (2022). Optimizing machine learning models for predictive analytics in cloud environments. International Journal for Research Publication and Seminar, 13(5), 611-642.

Dandu, M. M. K., Joshi, A., Tirupati, K. K., Chhapola, A., Jain, S., & Shrivastav, A. (2022). Quantile regression for delivery promise optimization. International Journal of Computer Science and Engineering (IJCSE, 11(1), 245-276.

Mahadik, S., Pakanati, D., Cherukuri, H., Jain, S., & Jain, S. (2024). Cross-functional team management in product development. Modern Dynamics: Mathematical Progressions, 1(2), 270–294. https://doi.org/10.36676/mdmp.v1.i2.24

Mahadik, S., Chinta, U., Bhimanapati, V. B. R., Goel, P., & Jain, A. (2023). Product roadmap planning in dynamic markets. Innovative Research Thoughts, 9(5), 282. https://doi.org/10.36676/irt.v9.i5.1488

Mahadik, S., Fnu Antara, Chopra, P., Renuka, A., & Goel, O. (2023). User-centric design in product development. Shodh Sagar® Universal Research Reports, 10(4), 473.

Mahadik, S., Murthy, P., Kumar, R., Goel, O., & Jain, A. (2023). The influence of market strategy on product success. International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET), 11(7), 1-31. Available at http://www.ijrmeet.org

Balasubramaniam, V. S., Mahadik, S., Khair, M. A., & Goel, O., & Jain, A. (2023). Effective risk mitigation strategies in digital project management. Innovative Research Thoughts, 9(1), 538–567.

Mahadik, S., Antara, F., Chopra, P., Renuka, A., & Goel, O. (2023). Universal research reports. SSRN. https://ssrn.com/abstract=4985267

Mahadik, S., Mangal, A., Singiri, S., Chhapola, A., & Jain, S. (2022). Risk mitigation strategies in product management. International Journal of Creative Research Thoughts (IJCRT), 10(12), 665.

Mahadik, S., Murthy, K. K. K., Cheruku, S. R., Jain, A., & Goel, O. (2022). Agile product management in software development. International Journal for Research Publication & Seminar, 13(5), 453.

Tirupati, K. K., Mahadik, S., Khair, M. A., & Goel, O., & Jain, A. (2022). Optimizing machine learning models for predictive analytics in cloud environments. International Journal for Research Publication & Seminar, 13(5), 611-637. https://doi.org/10.36676/jrps.v13.i5.1530

Mahadik, S., Khatri, D., Bhimanapati, V., Goel, L., & Jain, A. (2022). The role of data analysis in enhancing product features. SSRN. https://ssrn.com/abstract=4985275

Tirupati, K. K., Mahadik, S., Khair, M. A., & Goel, O., & Jain, A. (2022). Optimizing machine learning models for predictive analytics in cloud environments. International Journal for Research Publication & Seminar, 13(5), 611-642.

Mahadik, S., Kolli, R. K., Eeti, S., Goel, P., & Jain, A. (2021). Scaling startups through effective product management. International Journal of Progressive Research in Engineering Management and Science, 1(2), 68-81.

Upadhyay, A., Oommen, N. M., & Mahadik, S. (2021). Identification and assessment of Black Sigatoka disease in banana leaf. In V. Goar, M. Kuri, R. Kumar, & T. Senjyu (Eds.), Advances in Information Communication Technology and Computing (Vol. 135). Springer, Singapore. https://doi.org/10.1007/978-981-15-5421-6_24

Pramod Kumar Voola, Aravind Ayyagiri, Aravindsundeep Musunuri, Anshika Aggarwal, & Shalu Jain. (2024). Leveraging GenAI for clinical data analysis: Applications and challenges in real-time patient monitoring. Modern Dynamics: Mathematical Progressions, 1(2), 204–223. https://doi.org/10.36676/mdmp.v1.i2.21

Aravindsundeep Musunuri, Akshun Chhapola, & Shalu Jain. (2024). Optimizing high-speed serial links for multicore processors and network interfaces. Modern Dynamics: Mathematical Progressions, 1(2), 31–43. https://doi.org/10.36676/mdmp.v1.i2.9

Musunuri, A., Goel, O., & Jain, A. (2024). Developing high-reliability printed circuit boards for fiber optic systems. Journal of Quantum Science and Technology, 1(1). https://doi.org/10.36676/jqst.v1.i1.09

Voola, P. K., Ayyagiri, A., Musunuri, A., Aggarwal, A., & Jain, S. (2024). Modern Dynamics: Mathematical Progressions. Available at SSRN: https://ssrn.com/abstract=4984961

Musunuri, A., Goel, P., & Renuka, A. (2023). Innovations in multicore network processor design for enhanced performance. Innovative Research Thoughts, 9(3), Article 1460.

Musunuri, A., Jain, S., & Aggarwal, A. (2023). Characterization and validation of PAM4 signaling in modern hardware designs. Darpan International Research Analysis, 11(1), 60.

Arulkumaran, R., Ayyagiri, A., & Musunuri, A., Prof. (Dr.) Punit Goel, & Prof. (Dr.) Arpit Jain. (2022). Decentralized AI for financial predictions. International Journal for Research Publication & Seminar, 13(5), 434.

Musunuri, A., Goel, O., & Agarwal, N. (2021). Design strategies for high-speed digital circuits in network switching systems. International Journal of Creative Research Thoughts (IJCRT), 9(9), d842–d860. https://www.ijcrt.org/

Salunkhe, V., Ayyagiri, A., Musunuri, A., Jain, Prof. Dr. A., & Goel, Dr. P. (2021). Machine learning in clinical decision support: Applications, challenges, and future directions. Available at SSRN: https://ssrn.com/abstract=4985006 or http://dx.doi.org/10.2139/ssrn.4985006

Tangudu, A., & Agarwal, D. Y. K. PROF.(DR.) PUNIT GOEL, "Optimizing Salesforce Implementation for Enhanced Decision-Making and Business Performance." International Journal of Creative Research Thoughts (IJCRT), ISSN: 2320, 2882, d814-d832.

Alahari, J., Tangudu, A., Mokkapati, C., Goel, O., & Jain, A. (2024). "Implementing Continuous Integration/Continuous Deployment (CI/CD) Pipelines for Large-Scale iOS Applications." SHODH SAGAR® Darpan International Research Analysis, 12(3): 522. https://doi.org/10.36676/dira.v12.i3.1,4.

Tangudu, A., Pandian, P. K. G., & Jain, S. (2024). "Developing Scalable APIs for Data Synchronization in Salesforce Environments." Modern Dynamics: Mathematical Progressions, 1(2), 44-57.

Vishwasrao Salunkhe, Abhishek Tangudu, Chandrasekhara Mokkapati, Prof.(Dr.) Punit Goel, & Anshika Aggarwal. (2024). "Advanced Encryption Techniques in Healthcare IoT: Securing Patient Data in Connected Medical Devices." Modern Dynamics: Mathematical Progressions, 1(2), 224–247. https://doi.org/10.36676/mdmp.v1.i2.22.

Tangudu, A., Jain, S., & Aggarwal, A. (2024). "Best Practices for Ensuring Salesforce Application Security and Compliance." Journal of Quantum Science and Technology, 1(2), 88–101. https://doi.org/10.36676/jqst.v1.i2.18.

Tangudu, A., Pandian, P. K. G., & Jain, S. (2024). "Developing scalable APIs for data synchronization in Salesforce environments." Modern Dynamics: Mathematical Progressions, 1(2), 44–56. https://doi.org/10.36676/mdmp.v1.i2.10.

Abhishek Tangudu, Dr. Punit Goel, & A Renuka. (2024). "Migrating Legacy Salesforce Components to Lightning: A Comprehensive Guide." Darpan International Research Analysis, 12(2), 155–167. https://doi.org/10.36676/dira.v12.i2.76.

Abhishek Tangudu, Dr. Arpit Jain, & Er. Om Goel. (2024). "Effective Strategies for Managing Multi-Cloud Salesforce Solutions." Universal Research Reports, 11(2), 199–217. https://doi.org/10.36676/urr.v11.i2.1338.

Tangudu, A., Jain, S., & Pandian, P. K. G. (2023). "Developing scalable APIs for data synchronization in Salesforce environments." Darpan International Research Analysis, 11(1), 75.

Tangudu, A., Chhapola, A., & Jain, S. (2023). "Integrating Salesforce with third-party platforms: Challenges and best practices." International Journal for Research Publication & Seminar, 14(4), 229. https://doi.org/10.36676/jrps.v14.i4.

Abhishek Tangudu, Akshun Chhapola, & Shalu Jain. (2023). "Leveraging Lightning Web Components for Modern Salesforce UI Development." Innovative Research Thoughts, 9(2), 220–234. https://doi.org/10.36676/irt.v9.i2.1459.

Alahari, J., Tangudu, A., Mokkapati, C., Khan, S., & Singh, S. P. (2021). "Enhancing Mobile App Performance with Dependency Management and Swift Package Manager (SPM)." International Journal of Progressive Research in Engineering Management and Science, 1(2), 130-138.

Vijayabaskar, S., Tangudu, A., Mokkapati, C., Khan, S., & Singh, S. P. (2021). "Best Practices for Managing Large-Scale Automation Projects in Financial Services." International Journal of Progressive Research in Engineering Management and Science, 1(2), 107-117. https://doi.org/10.58257/IJPREMS12.

Tangudu, A., Pandian, P. K. G., & Jain, S. (2024). "Developing scalable APIs for data synchronization in Salesforce environments." Modern Dynamics: Mathematical Progressions, 1(2), 44–56. https://doi.org/10.36676/mdmp.v1.i2.10

Abhishek Tangudu, Dr. Punit Goel, & A Renuka. (2024). "Migrating Legacy Salesforce Components to Lightning: A Comprehensive Guide." Darpan International Research Analysis, 12(2), 155–167. https://doi.org/10.36676/dira.v12.i2.76.

Abhishek Tangudu, Dr. Arpit Jain, & Er. Om Goel. (2024). "Effective Strategies for Managing Multi-Cloud Salesforce Solutions." Universal Research Reports, 11(2), 199–217. https://doi.org/10.36676/urr.v11.i2.1338.

Abhishek Tangudu, Akshun Chhapola, & Shalu Jain. (2023). "Leveraging Lightning Web Components for Modern Salesforce UI Development." Innovative Research Thoughts, 9(2), 220–234. https://doi.org/10.36676/irt.v9.i2.1459

Tangudu, A., Pandian, P. K. G., & Jain, S. (2024). "Developing scalable APIs for data synchronization in Salesforce environments." Modern Dynamics: Mathematical Progressions, 1(2), 44–56. https://doi.org/10.36676/mdmp.v1.i2.10.

Agarwal, N., Fnu Antara, R., Chopra, P., Renuka, A., & Goel, P. (2024). Hyper parameter optimization in CNNs for EEG analysis. Modern Dynamics: Mathematical Progressions, 1(2), 336–379. https://doi.org/10.36676/mdmp.v1.i2.27

Balasubramaniam, V. S., Dandu, M. M. K., Renuka, A., Goel, O., & Agarwal, N. (2024). Enhancing vendor management for successful IT project delivery. Modern Dynamics: Mathematical Progressions, 1(2), 370–398. https://doi.org/10.36676/mdmp.v1.i2.29

Dandu, M. M. K., Arulkumaran, R., Agarwal, N., Aggarwal, A., & Goel, P. (2024). Improving neural retrieval with contrastive learning. Modern Dynamics: Mathematical Progressions, 1(2), 399–425. https://doi.org/10.36676/mdmp.v1.i2.30

Agarwal, N., Kolli, R. K., Eeti, S., Jain, A., & Goel, P. (2024). Multi-sensor biomarker using accelerometer and ECG data. SHODH SAGAR® Darpan International Research Analysis, 12(3), 494. https://doi.org/10.36676/dira.v12.i3.1,3

Agarwal, N., Gunj, R., Chintha, V. R., Pamadi, V. N., Aggarwal, A., & Gupta, V. (2023). GANs for enhancing wearable biosensor data accuracy. SHODH SAGAR® Universal Research Reports, 10(4), 533. https://doi.org/10.36676/urr.v10.i4.13,62

Agarwal, N., Murthy, P., Kumar, R., Goel, O., & Agarwal, R. (2023). Predictive analytics for real-time stress monitoring from BCI. International Journal of Research in Modern Engineering and Emerging Technology, 11(7), 61-97.

Joshi, A., Arulkumaran, R., Agarwal, N., Aggarwal, A., Goel, P., & Gupta, A. (2023). Cross market monetization strategies using Google mobile ads. Innovative Research Thoughts, 9(1), 480–507.

Agarwal, N., Gunj, R., Mahimkar, S., Shekhar, S., Jain, A., & Goel, P. (2023). Signal processing for spinal cord injury monitoring with sEMG. Innovative Research Thoughts, 9(5), 334. https://doi.org/10.36676/irt.v9.i5,1491

Pamadi, V. N., Chhapola, A., & Agarwal, N. (2023). Performance analysis techniques for big data systems. International Journal of Computer Science and Publications, 13(2), 217-236. https://rjpn.org/ijcspub/papers/IJCSP23B1501.pdf

Vadlamani, S., Agarwal, N., Chintha, V. R., Shrivastav, A., Jain, S., & Goel, O. (2023). Cross-platform data migration strategies for enterprise data warehouses. International Research Journal of Modernization in Engineering Technology and Science, 5(11), 1-15. https://doi.org/10.56726/IRJMETS46858

Agarwal, N., Gunj, R., Chintha, V. R., Kolli, R. K., Goel, O., & Agarwal, R. (2022). Deep learning for real-time EEG artifact detection in wearables. International Journal for Research Publication & Seminar, 13(5), 402.

Agarwal, N., Gunj, R., Mangal, A., Singiri, S., Chhapola, A., & Jain, S. (2022). Self-supervised learning for EEG artifact detection. International Journal of Creative Research Thoughts (IJCRT, 10(12).

Balasubramaniam, V. S., Dandu, M. M. K., Renuka, A., Goel, O., & Agarwal, N. (2024). Enhancing vendor management for successful IT project delivery. Modern Dynamics: Mathematical Progressions, 1(2), 370–398. https://doi.org/10.36676/mdmp.v1.i2.29

Balasubramaniam, V. S., Thumati, P. R. R., Kanchi, P., Agarwal, R., Goel, O., & Shrivastav, E. A. (2023). Evaluating the impact of agile and waterfall methodologies in large scale IT projects. International Journal of Progressive Research in Engineering Management and Science, 3(12), 397-412.

Joshi, A., Dandu, M. M. K., Sivasankaran, V., Renuka, A., & Goel, O. (2023). Improving delivery app user experience with tailored search features. Universal Research Reports, 10(2), 611-638.

Tirupati, K. K., Dandu, M. M. K., Balasubramaniam, V. S., Renuka, A., & Goel, O. (2023). End to end development and deployment of predictive models using Azure Synapse Analytics. Innovative Research Thoughts, 9(1), 508–537.

Balasubramaniam, V. S., Mahadik, S., Khair, M. A., & Goel, O., Prof. (Dr.) Jain, A. (2023). Effective risk mitigation strategies in digital project management. Innovative Research Thoughts, 9(1), 538–567.

Dandu, M. M. K., Balasubramaniam, V. S., Renuka, A., Goel, O., Goel, Dr. P., & Gupta, Dr. A. (2022). BERT models for biomedical relation extraction. SSRN. https://ssrn.com/abstract=4985957

Balasubramaniam, V. S., Vijayabaskar, S., Voola, P. K., Agarwal, R., & Goel, O. (2022). Improving digital transformation in enterprises through agile methodologies. International Journal for Research Publication and Seminar, 13(5), 507-537.

Chandramouli, A., Shukla, S., Nair, N., Purohit, S., Pandey, S., & Dandu, M. M. K. (2021). Unsupervised paradigm for information extraction from transcripts using BERT. ECML PKDD 2021. https://doi.org/10.48550/arXiv.2110.00949

Dandu, M. M. K., & Kumar, G. (2021). Composable NLP workflows for BERT-based ranking and QA system. UC San Diego. Retrieved from [https://gaurav5590.github.io/data/UCSD_CASL_Research_Gaurav_Murali.pdf].

PK Voola, A Mangal, S Singiri, A Chhapola, S Jain. (2024). International Journal of Research in Modern ….

Voola, Pramod Kumar, Pakanati, D., Cherukuri, H., Renuka, A., & Goel, Dr. Punit. (2024). Ethical AI in healthcare: Balancing innovation with privacy and compliance. Shodh Sagar Darpan International Research Analysis, 12(3), 389. https://doi.org/10.36676/dira.v12.i3.9

Voola, Pramod Kumar, Pakanati, D., Cherukuri, H., Renuka, A., & Goel, Dr. Punit. (2024). Ethical AI in healthcare: Balancing innovation with privacy and compliance. Available at SSRN: https://ssrn.com/abstract=4984953

Voola, Pramod Kumar, Ayyagiri, A., Musunuri, A., Aggarwal, A., & Jain, S. (2024). Leveraging GenAI for clinical data analysis: Applications and challenges in real-time patient monitoring. Modern Dynamics: Mathematical Progressions, 1(2), 204–223. https://doi.org/10.36676/mdmp.v1.i2.21

Santhosh Vijayabaskar, Kodyvaur K. M., Cheruku, S. R., Chhapola, A., & Goel, O. (2024). Optimizing cross-functional teams in remote work environments for product development. Modern Dynamics: Mathematical Progressions, 1(2), 188–203. https://doi.org/10.36676/mdmp.v1.i2.20

Voola, Pramod Kumar, Daram, S., Mehra, A., Jain, S., & Goel, O. (2024). Using Alteryx for advanced data analytics in financial technology. International Journal of Research in Modern Engineering and Emerging Technology (IJRMEET), 12(8), 27–48. https://www.ijrmeet.org/

Voola, P. K., Pakanati, D., Cherukuri, H., & Renuka, A. Prof. (Dr.) Punit Goel. (2024). Ethical AI in healthcare: Balancing innovation with privacy and compliance. Shodh Sagar Darpan International Research Analysis, 12(3), 389.

Vijayabaskar, S., Gangu, K., Gopalakrishna, P. K., Goel, P., & Gupta, V. (2024). Agile transformation in financial technology: Best practices and challenges. Shodh Sagar Darpan International Research Analysis, 12(3), 374. https://doi.org/10.36676/dira.v12.i3.9

Voola, Pramod Kumar, Daram, S., Mehra, A., Jain, S., & Goel, O. (2024). Data streaming pipelines in life sciences: Improving data integrity and compliance in clinical trials. Available at SSRN: https://ssrn.com/abstract=4984955

Voola, P. K., Pakanati, D., Cherukuri, H., Renuka, A., & Goel, Dr. Punit. (2024). Leveraging GenAI for clinical data analysis: Applications and challenges in real-time patient monitoring. Available at SSRN: https://ssrn.com/abstract=4984961

Voola, P. K., Avancha, S., Gajbhiye, B., Goel, O., & Jain, U. (2023). Automation in mobile testing: Techniques and strategies for faster, more accurate testing in healthcare applications. Shodh Sagar® Universal Research Reports, 10(4), 420–432. https://doi.org/10.36676/urr.v10.i4.1356

Prathyusha Nama, Manoj Bhoyar, & Swetha Chinta. (2024). AI-Powered Edge Computing in Cloud Ecosystems: Enhancing Latency Reduction and Real-Time Decision-Making in Distributed Networks. Well Testing Journal, 33(S2), 354–379. Retrieved from https://welltestingjournal.com/index.php/WT/article/view/109

Prathyusha Nama, Manoj Bhoyar, & Swetha Chinta. (2024). Autonomous Test Oracles: Integrating AI for Intelligent Decision-Making in Automated Software Testing. Well Testing Journal, 33(S2), 326–353. Retrieved from https://welltestingjournal.com/index.php/WT/article/view/108

Nama, P. (2024). Integrating AI in testing automation: Enhancing test coverage and predictive analysis for improved software quality. World Journal of Advanced Engineering Technology and Sciences, 13(01), 769–782. https://doi.org/10.30574/wjaets.2024.13.1.0486.

Nama, P., Reddy, P., & Pattanayak, S. K. (2024). Artificial intelligence for self-healing automation testing frameworks: Real-time fault prediction and recovery. CINEFORUM, 64(3S), 111-141.

Nama, P., Bhoyar, M., Chinta, S., & Reddy, P. (2023, September). Optimizing database replication strategies through machine learning for enhanced fault tolerance in cloud-based environments. Cineforum, 63(03), 30–44.

Downloads

Published

2024-11-20

How to Cite

Bagam, N., Shiramshetty, S. K., Mothey, M., Annam, S. N., & Bussa, S. (2024). Machine Learning Applications in Telecom and Banking. Integrated Journal for Research in Arts and Humanities, 4(6), 57–69. https://doi.org/10.55544/ijrah.4.6.8